EUROPAEM EMF Guideline 2016 for the prevention

diagnosis and treatment of EMF-related health problems and illnesses

Igor Belyaev
  • Cancer Research Institute BMC, Slovak Academy of Science, Bratislava, Slovakia
  • Prokhorov General Physics Institute, Russian Academy of Science, Moscow, Russian Federation
/ Amy Dean
  • American Academy of Environmental Medicine, Wichita, KS, United States of America
/ Horst Eger
  • Association of Statutory Health Insurance Physicians of Bavaria, Medical Quality Circle “Electromagnetic Fields in Medicine – Diagnostic, Therapy, Environment”, no. 65143, Naila, Germany
/ Gerhard Hubmann
  • Center for Holistic Medicine “MEDICUS”, Vienna, Austria; and Wiener Internationale Akademie für Ganzheitsmedizin (GAMED), Vienna, Austria
/ Reinhold Jandrisovits
  • Medical Association Burgenland, Environmental Medicine Department, Eisenstadt, Austria
/ Markus Kern
  • Medical Quality Circle “Electromagnetic Fields in Medicine – Diagnosis, Treatment and Environment”, Kempten, Germany; and Kompetenzinitiative zum Schutz von Mensch, Umwelt u. Demokratie e.V., Kempten, Germany
/ Michael Kundi
  • Institute of Environmental Health, Medical University Vienna, Vienna, Austria
/ Hanns Moshammer
  • Institute of Environmental Health, Medical University Vienna, Vienna, Austria
/ Piero Lercher
  • Medical Association Vienna, Environmental Medicine Department, Vienna, Austria
/ Kurt Müller
  • Cancer Research Institute BMC, Slovak Academy of Science, Bratislava, Slovakia
  • European Academy for Environmental Medicine, Kempten, Germany
/ Gerd Oberfeld
  • Korrespondenzautor
  • Cancer Research Institute BMC, Slovak Academy of Science, Bratislava, Slovakia
  • Department of Public Health, Government of Land Salzburg, Austria
  • E-Mail:
/ Peter Ohnsorge
  • Cancer Research Institute BMC, Slovak Academy of Science, Bratislava, Slovakia
  • European Academy for Environmental Medicine, Wurzburg, Germany
/ Peter Pelzmann
  • Cancer Research Institute BMC, Slovak Academy of Science, Bratislava, Slovakia
  • Department of electronics and computer science engineering, HTL Danube City, Vienna, Austria
/ Claus Scheingraber
  • Cancer Research Institute BMC, Slovak Academy of Science, Bratislava, Slovakia
  • Working Group Electro-Biology (AEB), Munich, Germany and Association for Environmental- and Human-Toxicology (DGUHT), Wurzburg, Germany
/ Roby Thill
  • Cancer Research Institute BMC, Slovak Academy of Science, Bratislava, Slovakia
  • Association for Environmental Medicine (ALMEN), Beaufort, Luxembourg
Online erschienen: 25.07.2016 | DOI:





Chronic diseases and illnesses associated with non-specific symptoms are on the rise. In addition to chronic stress in social and work environments, physical and chemical exposures at home, at work, and during leisure activities are causal or contributing environmental stressors that deserve attention by the general practitioner as well as by all other members of the health care community. It seems necessary now to take “new exposures” like electromagnetic fields (EMF) into account. Physicians are increasingly confronted with health problems from unidentified causes. Studies, empirical observations, and patient reports clearly indicate interactions between EMF exposure and health problems. Individual susceptibility and environmental factors are frequently neglected. New wireless technologies and applications have been introduced without any certainty about their health effects, raising new challenges for medicine and society. For instance, the issue of so-called non-thermal effects and potential long-term effects of low-dose exposure were scarcely investigated prior to the introduction of these technologies. Common electromagnetic field or EMF sources: Radio-frequency radiation (RF) (3 MHz to 300 GHz) is emitted from radio and TV broadcast antennas, Wi-Fi access points, routers, and clients (e.g. smartphones, tablets), cordless and mobile phones including their base stations, and Bluetooth devices. Extremely low frequency electric (ELF EF) and magnetic fields (ELF MF) (3 Hz to 3 kHz) are emitted from electrical wiring, lamps, and appliances. Very low frequency electric (VLF EF) and magnetic fields (VLF MF) (3 kHz to 3 MHz) are emitted, due to harmonic voltage and current distortions, from electrical wiring, lamps (e.g. compact fluorescent lamps), and electronic devices. On the one hand, there is strong evidence that long-term exposure to certain EMFs is a risk factor for diseases such as certain cancers, Alzheimer’s disease, and male infertility. On the other hand, the emerging electromagnetic hypersensitivity (EHS) is more and more recognized by health authorities, disability administrators and case workers, politicians, as well as courts of law. We recommend treating EHS clinically as part of the group of chronic multisystem illnesses (CMI), but still recognizing that the underlying cause remains the environment. In the beginning, EHS symptoms occur only occasionally, but over time they may increase in frequency and severity. Common EHS symptoms include headaches, concentration difficulties, sleep problems, depression, a lack of energy, fatigue, and flu-like symptoms. A comprehensive medical history, which should include all symptoms and their occurrences in spatial and temporal terms and in the context of EMF exposures, is the key to making the diagnosis. The EMF exposure is usually assessed by EMF measurements at home and at work. Certain types of EMF exposure can be assessed by asking about common EMF sources. It is very important to take the individual susceptibility into account. The primary method of treatment should mainly focus on the prevention or reduction of EMF exposure, that is, reducing or eliminating all sources of high EMF exposure at home and at the workplace. The reduction of EMF exposure should also be extended to public spaces such as schools, hospitals, public transport, and libraries to enable persons with EHS an unhindered use (accessibility measure). If a detrimental EMF exposure is reduced sufficiently, the body has a chance to recover and EHS symptoms will be reduced or even disappear. Many examples have shown that such measures can prove effective. To increase the effectiveness of the treatment, the broad range of other environmental factors that contribute to the total body burden should also be addressed. Anything that supports homeostasis will increase a person’s resilience against disease and thus against the adverse effects of EMF exposure. There is increasing evidence that EMF exposure has a major impact on the oxidative and nitrosative regulation capacity in affected individuals. This concept also may explain why the level of susceptibility to EMF can change and why the range of symptoms reported in the context of EMF exposures is so large. Based on our current understanding, a treatment approach that minimizes the adverse effects of peroxynitrite – as has been increasingly used in the treatment of multisystem illnesses – works best. This EMF Guideline gives an overview of the current knowledge regarding EMF-related health risks and provides recommendations for the diagnosis, treatment and accessibility measures of EHS to improve and restore individual health outcomes as well as for the development of strategies for prevention.

Current state of the scientific and political debate about EMF-related health problems from a medical perspective


Worldwide statements of organizations regarding EMF

EMF and cancer

Genotoxic effects


EMF and infertility and reproduction

Electromagnetic hypersensitivity (EHS)

Other diseases that require attention with respect to EMF

Recommendations for action



  • 1.

    Hanninen O, Knol AB, Jantunen M, Lim TA, Conrad A, et al. Environmental burden of disease in Europe: assessing nine risk factors in six countries. Environ Health Perspect 2014;122(5):439–46.

  • 2.

    Bundespsychotherapeutenkammer. BPtK-Studie zur Arbeitsunfähigkeit – Psychische Erkrankungen und Burnout [Internet]. Berlin (DE): Bundespsychotherapeutenkammer, 2012:29. Report 2012. Available at:

  • 3.

    Bundespsychotherapeutenkammer. BPtK-Studie zur Arbeits- und Erwerbsunfähigkeit – Psychische Erkrankungen und gesundheitsbedingte Frühverrentung [Internet]. Berlin (DE): Bundespsychotherapeutenkammer, 2013:66. Report 2013. Available at:

  • 4.

    Fritze J. Psychopharmaka-Verordnungen: Ergebnisse und Kommentare zum Arzneiverordnungsreport 2011. Psychopharmakotherapie 2011;18:245–56.

  • 5.

    Bundesinstitut für Arzneimittel und Medizinprodukte. Erstmals seit 20 Jahren kein Anstieg beim Methylphenidat-Verbrauch [Internet]. Bonn (DE): Bundesinstitut für Arzneimittel und Medizinprodukte, 2014 Apr 1. Pressemitteilung Nummer 05/14; Available at:

  • 6.

    Badura B, Ducki A, Schroder H, Klose J, Meyer M, editors. Fehlzeiten-Report 2012. Berlin, Heidelberg (DE): Springer Verlag, 2012:528pp.

  • 7.

    OECD. Health at a Glance 2013: OECD Indicators [Internet]. Paris (FR): OECD Publishing, 2013:212 p. [Crossref]. Available at:

  • 8.

    Pawankar R, Canonica GW, Holgate ST, Lockey RF, editors. WAO White book on Allergy 2011–2012 [Internet]. Milwaukee, WI (US): World Allergy Organization, 2013:228. Available at:

  • 9.

    BioInitiative Working Group, Sage C, Carpenter DO, editors. BioInitiative Report: A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Fields (ELF and RF) at, August 31, 2007.

  • 10.

    BioInitiative Working Group, Sage C, Carpenter DO, editors. BioInitiative Report: A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Radiation at, December 31, 2012.

  • 11.

    Levitt B, Lai H. Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ Rev 2010;18:369–95.

  • 12.

    Pall ML. Scientific evidence contradicts findings and assumptions of Canadian safety panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Rev Environ Health 2015;30(2):99–116.

  • 13.

    Binhi VN. Magnetobiology: Underlying Physical Problems. San Diego: Academic Press, 2002:1–473.

  • 14.

    Binhi VN. Principles of electromagnetic biophysics (in Russian). Moscow (RU): Fizmatlit, 2011:1–571.

  • 15.

    Georgiou CD. Oxidative stress-induced biological damage by low-level EMFs: mechanism of free radical pair electron spin-polarization and biochemical amplification. In: Giuliani L, Soffritti M, editors. Non-thermal effects and mechanisms of interaction between electromagnetic fields and living matter. Bologna (IT): Ramazzini institute, 2010. European Journal of Oncology – Library Vol. 5. pp 63–113. Available at:

  • 16.

    Pall ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med 2013;17(8):958–65.

  • 17.

    Blank M, Goodman R. Electromagnetic fields stress living cells. Pathophysiology 2009;16(2–3):71–8.

  • 18.

    Blackman C. Cell phone radiation: evidence from ELF and RF studies supporting more inclusive risk identification and assessment. Pathophysiology 2009;16(2–3):205–16.

  • 19.

    Hedendahl L, Carlberg M, Hardell L. Electromagnetic hypersensitivity – an increasing challenge to the medical profession. Rev Environ Health 2015;30(4):209–15.

  • 20.

    International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics 1998;74(4):494–522.

  • 21.

    International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys 2010;99(6):818–36.

  • 22.

    Belyaev I. Biophysical mechanisms for nonthermal microwave effects. In: Markov M, editor. Electromagnetic fields in biology and medicine. Boca Raton, London, New York: CRC Press 2015:49–68.

  • 23.

    Belyaev I. Electromagnetic field effects on cells and cancer risks from mobile communication. In: Rosch PJ, editor. Bioelectromagnetic and subtle energy medicine, 2nd ed. Boca Raton, London, New York: CRC Press, 2015:517–39.

  • 24.

    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-Ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields. Lyon (FR): International Agency for Research on Cancer (IARC), 2013:480. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol 102. Available at:

  • 25.

    Vecchia P. ICNIRP and international standards. London (GB): Conference EMF and Health, 2008:28. Available at:

  • 26.

    Panagopoulos DJ, Johansson O, Carlo GL. Evaluation of specific absorption rate as a dosimetric quantity for electromagnetic fields bioeffects. PLoS One 2013;8(6):e62663.

  • 27.

    Belyaev I. Dependence of non-thermal biological effects of microwaves on physical and biological variables: implications for reproducibility and safety standards [Internet]. In: Giuliani L, Soffritti M, editors. Non-thermal effects and mechanisms of interaction between electromagnetic fields and living matter. Bologna (IT): Ramazzini institute, 2010. European Journal of Oncology – Library Vol. 5. pp 187–218. Available at:

  • 28.

    Grigoriev YG, Stepanov VS, Nikitina VN, Rubtcova NB, Shafirkin AV, et al. ISTC Report. Biological effects of radiofrequency electromagnetic fields and the radiation guidelines. Results of experiments performed in Russia/Soviet Union. Moscow: Institute of Biophysics, Ministry of Health, Russian Federation, 2003.

  • 29.

    SanPiN 2.2.4/2.1.8. Radiofrequency electromagnetic radiation (RF EMR) under occupational and living conditions. Moscow: Minzdrav. [2.2.4/] 1996.

  • 30.

    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-Ionizing Radiation, Part 1: Static and Extremely Low-Frequency (ELF) Electric and Magnetic Fields. Lyon (FR): International Agency for Research on Cancer (IARC), 2002:445. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, VOL 80. Available at:

  • 31.

    Oberfeld G. Precaution in Action – Global Public Health Advice Following BioInitiative 2007. In Sage C, Carpenter DO, editors. BioInitiative Report 2012: A Rationale for a Biologically based Public Exposure Standard for Electromagnetic Fields (ELF and RF), 2012. Available at:

  • 32.

    International Commission for electromagnetic safety (ICEMS), Resolutions. Available at:

  • 33.

    Radiofrequency electromagnetic radiation and the health of Canadians. Report of the Standing Committee on Health, JUNE 2015, Parliament of Canada, Ottawa, Ontario. Available at:

  • 34.

    Havas M. International expert’s Perspective on the Health Effects of Electromagnetic Fields (EMF) and Electromagnetic Radiation (EMR) [Internet]. Peterborough, ON, (CD): 2011 June 11 (updated 2014 July). Available at:

  • 35.

    European Environmental Agency. Radiation risk from everyday devices assessed [Internet]. Copenhagen (DK): 2007 Sept 17. Available at:

  • 36.

    European Environmental Agency. Health risks from mobile phone radiation – why the experts disagree [Internet]. Copenhagen (DK): 2011 Oct 12. Available at:

  • 37.

    European Environmental Agency. Late lessons from early warnings: science, precaution, innovation [Internet]. Copenhagen (DK): 2013 Jan 23. EEA Report No 1/2013. Available at:

  • 38.

    EU Parliament. Report on health concerns associated with electromagnetic fields. Brussels (BE): Committee on the Environment, Public Health and Food Safety of the European Parliament. Rapporteur: Frederique Ries (2008/2211(INI) [Internet]. Available at:

  • 39.

    EU Parliament. European Parliament resolution of 2 April 2009 on health concerns associated with electromagnetic fields [Internet]). Brussels (BE): European Parliament, 2009 Apr 2. Available at:

  • 40.

    Fragopoulou A, Grigoriev Y, Johansson O, Margaritis LH, Morgan L, et al. Scientific panel on electromagnetic field health risks: consensus points, recommendations, and rationales. Environ Health 2010;25(4):307–17.

  • 41.

    Gesichtspunkte zur aktuellen gesundheitlichen Bewertung des Mobilfunks. Empfehlung des Obersten Sanitätsrates. Ausgabe 05/14; Bundesministerium für Gesundheit. Vienna (AT). Available at:

  • 42.

    Council of Europe – Parliamentary Assembly. The potential dangers of electromagnetic fields and their effect on the environment. Resolution, Doc. 1815, Text adopted by the Standing Committee, acting on behalf of the Assembly, on 27 May 2011 [Internet]. Available at:

  • 43.

    Dean AL, Rea WJ. American Academy of Environmental Medicine Recommendations Regarding Electromagnetic and Radiofrequency Exposure [Internet]. Wichita, KS (US): Executive Committee of the American Academy of Environmental Medicine, 2012 July 12. Available at:

  • 44.

    Federal Public Service (FPS) Health, Food Chain Safety and Environment. Mobile phones and children-New regulation for the sale of mobile phones as of 2014 [Internet]. Brussels (BE): Federal Public Service (FPS) Health, Food Chain Safety and Environment, 2016 Jan 12. Available at:

  • 45.

    Assemblėe Nationale. PROPOSITION DE LOI relative a la sobriete, a la transparence, a l’information et a la concertation en matiere d’exposition aux ondes electromagnetiques. Paris (FR): Assemblėe Nationale, France, 2015 Jan 29. Available at:

  • 46.

    Blank M, Havas M, Kelley E, Lai H, Moskowitz JM. International EMF Scientist Appeal [Internet]. 2015 May 11. Available at:

  • 47.

    International Scientific Declaration on Electromagnetic Hypersensitivity and Multiple Chemical Sensitivity. Following the 5th Paris Appeal Congress that took place on the 18th of May, 2015 at the Royal Academy of Medicine, Brussels, Belgium. Available at:

  • 48.

    Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol 1979;109(3):273–84.

  • 49.

    Robinette CD, Silverman C, Jablon S. Effects upon health of occupational exposure to microwave radiation (radar). Am J Epidemiol 1980;112:39–53.

  • 50.

    Ahlbom A, Day N, Feychting M, Roman E, Skinner J, et al. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer 2000;83(5):692–8.

  • 51.

    Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh MA. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology 2000;11(6):624–34.

  • 52.

    Kheifets L, Ahlbom A, Crespi CM, Draper G, Hagihara J, et al. Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer 2010;103(7):1128–35.

  • 53.

    Zhao L, Liu X, Wang C, Yan K, Lin X, et al. Magnetic fields exposure and childhood leukemia risk: a meta-analysis based on 11,699 cases and 13,194 controls. Leuk Res 2014;38(3):269–74.

  • 54.

    Yang Y, Jin X, Yan C, Tian Y, Tang J, et al. Case-only study of interactions between DNA repair genes and low-frequency electromagnetic fields in childhood acute leukemia. Leuk Lymphoma 2008;29(12):2344.

  • 55.

    Kundi M. Evidence for childhood cancers (Leukemia). In: Sage C, Carpenter DO, editors. The BioInitiative Report 2012. A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Fields (ELF and RF), 2012,

  • 56.

    Sage C. Summary for the public. In: Sage C, Carpenter DO, editors. The BioInitiative Report 2012. A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Fields (ELF and RF), 2012. Available at:

  • 57.

    Hardell L, Nasman A, Pahlson A, Hallquist A, Hansson Mild K. Use of cellular telephones and the risk for brain tumours: a case-control study. Int J Oncol 1999;15(1):113–6.

  • 58.

    Coureau G, Bouvier G, Lebailly P, Fabbro-Peray P, Gruber A, et al. Mobile phone use and brain tumours in the CERENAT case-control study. Occup Environ Med 2014;71(7):514–22.

  • 59.

    Hardell L, Carlberg M, Soderqvist F, Mild KH. Case-control study of the association between malignant brain tumours diagnosed between 2007 and 2009 and mobile and cordless phone use. Int J Oncol 2013;43(6):1833–45.

  • 60.

    Hardell L, Carlberg M, Soderqvist F, Mild KH. Pooled analysis of case-control studies on acoustic neuroma diagnosed 1997–2003 and 2007–2009 and use of mobile and cordless phones. Int J Oncol 2013;43(4):1036–44.

  • 61.

    Hardell L, Carlberg M. Using the Hill viewpoints from 1965 for evaluating strengths of evidence of the risk for brain tumors associated with use of mobile and cordless phones. Rev Environ Health 2013;28:97–106.

  • 62.

    Carlberg M, Hardell L. Decreased survival of glioma patients with astrocytoma grade IV (glioblastoma multiforme) associated with long-term use of mobile and cordless phones. Int J Environ Res Public Health 2014;11(10):10790–805.

  • 63.

    Hardell L, Carlberg M. Mobile phone and cordless phone use and the risk for glioma – Analysis of pooled case-control studies in Sweden, 1997–2003 and 2007–2009. Pathophysiology 2015;22(1):1–13.

  • 64.

    West JG, Kapoor NS, Liao SY, Chen JW, Bailey L, et al. Multifocal breast cancer in young women with prolonged contact between their breasts and their cellular phones. Case Rep Med 2013;2013:354682.

  • 65.

    Levis AG, Gennaro V, Garbisa S. Business bias as usual: the case of electromagnetic pollution. In: Elsner W, Frigato P, Ramazzotti P, editors. Social Costs Today. Institutional Economics and Contemporary Crises. London and New York: Routledge (Taylor & Francis Group), 2012:225–68.

  • 66.

    Lai H. Genetic Effects of Non-Ionizing Electromagnetic Fields Bioinitiative 2012: A Rationale for a Biologically based Public Exposure Standard for Electromagnetic Fields (ELF and RF). Sage C and Carpenter DO. 1-59.

  • 67.

    Huss A, Egger M, Hug K, Huwiler-Müntener K, Röösli M. Source of funding and results of studies of health effects of mobile phone use: systematic review of experimental studies. Cien Saude Colet 2008;13(3):1005–12.

  • 68.

    Apollonio F, Liberti M, Paffi A, Merla C, Marracino P, et al. Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: a systematic approach. IEEE Trans Microw Theory Tech 2013;61(5):2031–45.

  • 69.

    Cucurachi S, Tamis WL, Vijver MG, Peijnenburg WJ, Bolte JF, et al. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int 2013;51:116–40.

  • 70.

    Belyaev IY, Alipov YD, Harms-Ringdahl M. Effects of weak ELF on E-coli cells and human lymphocytes: role of genetic, physiological, and physical parameters. In: Bersani F, editor. Electricity and magnetism in biology and medicine. New York: Kluwer Academic/Plenum Publ, 1999:481–4.

  • 71.

    Belyaev IY, Alipov ED. Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes. Biochim Biophys Acta 2001;1526(3):269–76.

  • 72.

    Sarimov R, Alipov ED, Belyaev IY. Fifty hertz magnetic fields individually affect chromatin conformation in human lymphocytes: dependence on amplitude, temperature, and initial chromatin state. Bioelectromagnetics 2011;32(7):570–9.

  • 73.

    Belyaev IY, Hillert L, Protopopova M, Tamm C, Malmgren LO, et al. 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics 2005;26(3):173–84.

  • 74.

    Markovà E, Hillert L, Malmgren L, Persson BR, Belyaev IY. Microwaves from GSM Mobile Telephones Affect 53BP1 and gamma-H2AX Foci in Human Lymphocytes from Hypersensitive and Healthy Persons. Environ Health Perspect 2005;113(9):1172–7.

  • 75.

    Belyaev IY, Markovà E, Hillert L, Malmgren LO, Persson BR. Microwaves from UMTS/GSM mobile phones induce long-lasting inhibition of 53BP1/g-H2AX DNA repair foci in human lymphocytes. Bioelectromagnetics 2009;30(2):129–41.

  • 76.

    Sarimov R, Malmgren LO, Markova E, Persson BR, Belyaev IY. Nonthermal GSM microwaves affect chromatin conformation in human lymphocytes similar to heat shock. IEEE Trans Plasma Sci 2004;32(4):1600–8.

  • 77.

    Markovà E, Malmgren LOG, Belyae IY. Microwaves from mobile phones inhibit 53BP1 focus formation in human stem cells more strongly than in differentiated cells: possible mechanistic link to cancer risk. Environ Health Perspect 2010;118(3):394–9.

  • 78.

    World Health Organization (WHO). Radiofrequency and microwaves. Environmental Health Criteria 16, Geneva (CH): WHO, 1981. Available at:

  • 79.

    World Health Organization (WHO). Extremely low frequency (ELF) fields. Environmental Health Criteria 35, Geneva (CH): WHO, 1984. Available at:

  • 80.

    Haynal A, Regli F. Zusammenhang der amyotrophischen Lateralsklerose mit gehäuften Elektrotraumata [Amyotrophic lateral sclerosis associated with accumulated electric injury]. Confin Neurol 1964;24:189–98.

  • 81.

    Şahin A, Aslan A, Baş O, İkinci A, Özyılmaz C, et al. Deleterious impacts of a 900-MHz electromagnetic field on hippocampal pyramidal neurons of 8-week-old Sprague Dawley male rats. Brain Res 2015;1624:232–8.

  • 82.

    Schliephake E. Arbeitsergebnisse auf dem Kurzwellengebiet [Work results in the area of short waves]. Dtsch Med Wochenschr 1932;58(32):1235–41.

  • 83.

    Sadchikova MN. State of the nervous system under the influence of UHF. In: Letavet AA, Gordon ZV, editors. The biological action of ultrahigh frequencies. Moscow: Academy of Medical Sciences, 1960:25–9.

  • 84.

    Von Klitzing L. Low-frequency pulsed electromagnetic fields influence EEG of man. Phys Medica 1995;11:77–80.

  • 85.

    Reiser H, Dimpfel W, Schober F. The influence of electromagnetic fields on human brain activity. Eur J Med Res 1995;1(1):27–32.

  • 86.

    Röschke J, Mann K. No short-term effects of digital mobile radio telephone on the awake human electroencephalogram. Bioelectromagnetics 1997;18(2):172–6.

  • 87.

    Hietanen M, Kovala T, Hamalainen AM. Human brain activity during exposure to radiofrequency fields emitted by cellular phones. Scand J Work Environ Health 2000;26(2):87–92.

  • 88.

    Croft R, Chandler J, Burgess A, Barry R, Williams J, et al. Acute mobile phone operation affects neural function in humans. Clin Neurophysiol 2002;113(10):1623–32.

  • 89.

    Kramarenko AV, Tan U. Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study. Int J Neurosci 2003;113(7):1007–19.

  • 90.

    Vecchio F, Babiloni C, Ferreri F, Curcio G, Fini R, et al. Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms. Eur J Neurosci 2007;25(6):1908–13.

  • 91.

    Vecchio F, Babiloni C, Ferreri F, Buffo P, Cibelli G, et al. Mobile phone emission modulates inter-hemispheric functional coupling of EEG alpha rhythms in elderly compared to young subjects. Clin Neurophysiol 2010;121(2):163–71.

  • 92.

    Vecchio F, Buffo P, Sergio S, Iacoviello D, Rossini PM, et al. Mobile phone emission modulates event-related desynchronization of α rhythms and cognitive-motor performance in healthy humans. Clin Neurophysiol 2012;123(1):121–8.

  • 93.

    Perentos N, Croft RJ, McKenzie RJ, Cvetkovic D, Cosic I. The effect of GSM-like ELF radiation on the alpha band of the human resting EEG. Conf Proc IEEE Eng Med Biol Soc 2008;1:5680–3.

  • 94.

    Trunk A, Stefanics G, Zentai N, Kovács-Bálint Z, Thuróczy G, et al. No effects of a single 3G UMTS mobile phone exposure on spontaneous EEG activity, ERP correlates, and automatic deviance detection. Bioelectromagnetics 2013;34(1):31–42.

  • 95.

    Ghosn R, Yahia-Cherif L, Hugueville L, Ducorps A, Lemarechal JD, et al. Radiofrequency signal affects alpha band in resting electroencephalogram. J Neurophysiol 2015;113(7):2753–9.

  • 96.

    Roggeveen S, van Os J, Viechtbauer W, Lousberg R. EEG changes due to experimentally induced 3G mobile phone radiation. PLoS One 2015;10(6):e0129496.

  • 97.

    Freude G, Ullsperger P, Eggert S, Ruppe I. Effects of microwaves emitted by cellular phones on human slow brain potentials. Bioelectromagnetics 1998;19(6):384–7.

  • 98.

    Freude G, Ullsperger P, Eggert S, Ruppe I. Microwaves emitted by cellular telephones affect human slow brain potentials. Eur J Appl Physiol 2000;81(1–2):18–27.

  • 99.

    Hladky A, Musil J, Roth Z, Urban P, Blazkova V. Acute effects of using a mobile phone on CNS functions. Cent Eur J Public Health 1999;7(4):165–7.

  • 100.

    Hamblin DL, Wood AW, Croft RJ, Stough C. Examining the effects of electromagnetic fields emitted by GSM mobile phones on human event-related potentials and performance during an auditory task. Clin Neurophysiol 2004;115(1):171–8.

  • 101.

    Yuasa K, Arai N, Okabe S, Tarusawa Y, Nojima T, et al. Effects of thirty minutes mobile phone use on the human sensory cortex. Clin Neurophysiol 2006;117:900–5.

  • 102.

    Bak M, Dudarewicz A, Zmyślony M, Sliwinska-Kowalska M. Effects of GSM signals during exposure to event related potentials (ERPs). Int J Occup Med Environ Health 2010;23(2):191–9.

  • 103.

    Maganioti AE, Hountala CD, Papageorgiou CC, Kyprianou MA, Rabavilas AD, et al. Principal component analysis of the P600 waveform: RF and gender effects. Neurosci Lett 2010;478(1):19–23.

  • 104.

    Trunk A, Stefanics G, Zentai N, Bacskay I, Felinger A, et al. Lack of interaction between concurrent caffeine and mobile phone exposure on visual target detection: an ERP study. Pharmacol Biochem Behav 2014;124:412–20.

  • 105.

    Mann K, Röschke J. 1996. Effects of pulsed high-frequency electromagnetic fields on human sleep. Neuropsychobiology 1996;33(1):41–7.

  • 106.

    Borbely AA, Huber R, Graf T, Fuchs B, Gallmann E, et al. Pulsed high-frequency electromagnetic field affects human sleep and sleep electroencephalogram. Neurosci Lett 1999;275(3):207–10.

  • 107.

    Huber R, Graf T, Cote KA, Wittmann L, Gallmann E, et al. Exposure to pulsed high-frequency electromagnetic field during waking affects human sleep EEG. Neuroreport 2000;11(15):3321–5.

  • 108.

    Huber R, Treyer V, Borbély AA, Schuderer J, Gottselig JM, et al. Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG. J Sleep Res 2002;11:289–95.

  • 109.

    Huber R, Schuderer J, Graf T, Jutz K, Borbely AA, et al. Radio frequency electromagnetic field exposure in humans: Estimation of SAR distribution in the brain, effects on sleep and heart rate. Bioelectromagnetics 2003;24(4):262–76.

  • 110.

    Regel SJ, Tinguely G, Schuderer J, Adam M, Kuster N, et al. Pulsed radio-frequency electromagnetic fields: dose-dependent effects on sleep, the sleep EEG and cognitive performance. J Sleep Res 2007;16(3):253–8.

  • 111.

    Fritzer G, Göder R, Friege L, Wachter J, Hansen V, et al. Effects of short- and long-term pulsed radiofrequency electromagnetic fields on night sleep and cognitive functions in healthy subjects. Bioelectromagnetics 2007;28(4):316–25.

  • 112.

    Lowden A, Akerstedt T, Ingre M, Wiholm C, Hillert L, et al. Sleep after mobile phone exposure in subjects with mobile phone-related symptoms. Bioelectromagnetics 2011;32(1):4–14.

  • 113.

    Loughran SP, McKenzie RJ, Jackson ML, Howard ME, Croft RJ. Individual differences in the effects of mobile phone exposure on human sleep: rethinking the problem. Bioelectromagnetics 2012;33(1):86–93.

  • 114.

    Schmid MR, Loughran SP, Regel SJ, Murbach M, Bratic Grunauer A, et al. Sleep EEG alterations: effects of different pulse-modulated radio frequency electromagnetic fields. J Sleep Res 2012;21(1):50–58.

  • 115.

    Schmid MR, Murbach M, Lustenberger C, Maire M, Kuster N, et al. Sleep EEG alterations: effects of pulsed magnetic fields versus pulse-modulated radio frequency electromagnetic fields. J Sleep Res 2012;21(6):620–9.

  • 116.

    Nakatani-Enomoto S, Furubayashi T, Ushiyama A, Groiss SJ, Ueshima K, et al. Effects of electromagnetic fields emitted from W-CDMA-like mobile phones on sleep in humans. Bioelectromagnetics 2013;34(8):589–8.

  • 117.

    Lustenberger C, Murbach M, Durr R, Schmid MR, Kuster N, et al. Stimulation of the brain with radiofrequency electromagnetic field pulses affects sleep-dependent performance improvement. Brain Stimul 2013;6(5):805–11.

  • 118.

    Lustenberger C, Murbach M, Tüshaus L, Wehrle F, Kuster N, et al. Inter-individual and intra-individual variation of the effects of pulsed RF EMF exposure on the human sleep EEG. Bioelectromagnetics 2015;36(3):169–77.

  • 119.

    Danker-Hopfe H, Dorn H, Bolz T, Peter A, Hansen ML, et al. Effects of mobile phone exposure (GSM 900 and WCDMA/UMTS) on polysomnography based sleep quality: An intra- and inter-individual perspective. Environ Res 2015;145:50–60.

  • 120.

    Preece AW, Iwi G, Davies-Smith A, Wesnes K, Butler S, et al. Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. Int J Radiat Biol 1999;75(4):447–56.

  • 121.

    Koivisto M, Revonsuo A, Krause C, Haarala C, Sillanmaki L, et al. Effects of 902 MHz electromagnetic field emitted by cellular telephones on response times in humans. Neuroreport 2000;11(2):413–5.

  • 122.

    Edelstyn N, Oldershaw A. The acute effects of exposure to the electromagnetic field emitted by mobile phones on human attention. Neuroreport 2002;13(1):119–21.

  • 123.

    Lee TM, Lam PK, Yee LT, Chan CC. The effect of the duration of exposure to the electromagnetic field emitted by mobile phones on human attention. Neuroreport 2003;14(10):1361–4.

  • 124.

    Curcio G, Ferrara M, De Gennaro L, Cristiani R, D’Inzeo G, et al. Time-course of electromagnetic field effects on human performance and tympanic temperature. Neuroreport 2004; 15(1):161–4.

  • 125.

    Schmid G, Sauter C, Stepansky R, Lobentanz IS, Zeitlhofer J. No influence on selected parameters of human visual perception of 1970 MHz UMTS-like exposure. Bioelectromagnetics 2005;26(4):243–50.

  • 126.

    Cinel C, Boldini A, Russo R, Fox E. Effects of mobile phone electromagnetic fields on an auditory order threshold task. Bioelectromagnetics 2007;28(6):493–6.

  • 127.

    Luria R, Eliyahu I, Hareuveny R, Margaliot M, Meiran N. Cognitive effects of radiation emitted by cellular phones: the influence of exposure side and time. Bioelectromagnetics 2009;30(3):198–204.

  • 128.

    Leung S, Croft RJ, McKenzie RJ, Iskra S, Silber B, et al. Effects of 2G and 3G mobile phones on performance and electrophysiology in adolescents, young adults and older adults. Clin Neurophysiol 2011;122(11):2203–16.

  • 129.

    Mortazavi SM, Rouintan MS, Taeb S, Dehghan N, Ghaffarpanah AA, et al. Human short-term exposure to electromagnetic fields emitted by mobile phones decreases computer-assisted visual reaction time. Acta Neurol Belg 2012;112(2):171–5.

  • 130.

    Wallace D, Eltiti S, Ridgewell A, Garner K, Russo R, et al. Cognitive and physiological responses in humans exposed to a TETRA base station signal in relation to perceived electromagnetic hypersensitivity. Bioelectromagnetics 2012;33(1):23–39.

  • 131.

    Sauter C, Eggert T, Dorn H, Schmid G, Bolz T, et al. Do signals of a hand-held TETRA transmitter affect cognitive performance, well-being, mood or somatic complaints in healthy young men? Results of a randomized double-blind cross-over provocation study. Environ Res 2015;140:85–94.

  • 132.

    Volkow ND, Tomasi D, Wang GJ, Vaska P, Fowler JS, et al. Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. JAMA 2011;305(8):808–13.

  • 133.

    Kwon MS, Vorobyev V, Kännälä S, Laine M, Rinne JO, et al. GSM mobile phone radiation suppresses brain glucose metabolism. J Cereb Blood Flow Metab 2011;31(12):2293–301.

  • 134.

    Huber R, Treyer V, Schuderer J, Berthold T, Buck A, et al. Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow. Eur J Neurosci 2005;21(4):1000–6.

  • 135.

    Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, et al. Mobile phone affects cerebral blood flow in humans. J Cereb Blood Flow Metab 2006;26(7):885–90.

  • 136.

    Sienkiewicz ZJ, Blackwell RP, Haylock RG, Saunders RD, Cobb BL. Low-level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a spatial learning task in mice. Bioelectromagnetics 2000;21(3):151–8.

  • 137.

    Fragopoulou AF, Miltiadous P, Stamatakis A, Stylianopoulou F, Koussoulakos SL, et al. Whole body exposure with GSM 900 MHz affects spatial memory in mice. Pathophysiology 2010;17(3):179–87.

  • 138.

    Aldad TS, Gan G, Gao XB, Taylor HS. Fetal radiofrequency radiation exposure from 800–1900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Re 2012;2:312.

  • 139.

    Sharma A, Sisodia R, Bhatnagar D, Saxena VK. Spatial memory and learning performance and its relationship to protein synthesis of Swiss albino mice exposed to 10 GHz microwaves. Int J Radiat Biol 2013;90(1):29–35.

  • 140.

    Shirai T, Imai N, Wang J, Takahashi S, Kawabe M, et al. Multigenerational effects of whole body exposure to 2.14-GHz W-CDMA cellular phone signals on brain function in rats. Bioelectromagnetics 2014;35(7):497–511.

  • 141.

    Hu S, Peng R, Wang C, Wang S, Gao Y, et al. Neuroprotective effects of dietary supplement Kang-fu-ling against high-power microwave through antioxidant action. Food Funct 2014;5(9):2243–51.

  • 142.

    Sokolovic D, Djordjevic B, Kocic G, Babovic P, Ristic G, et al. The effect of melatonin on body mass and behaviour of rats during an exposure to microwave radiation from mobile phone. Bratisl Lek Listy 2012;113(5):265–9.

  • 143.

    Lai H. Neurological effects of non-ionizing electromagnetic fields. In: Sage C, Carpenter DO, editors. The bioinitiative report 2012, a rationale for a biologically-based public exposure standard for electromagnetic fields (ELF and RF), 2012. Available at:

  • 144.

    Adey WR. Evidence for cooperative mechanisms in the susceptibility of cerebral tissue to environmental and intrinsic electric fields. In: Schmitt FO, Schneider DN, Crothers DM, editors. Functional linkage in biomolecular systems. New York: Raven Press, 1975:325–42.

  • 145.

    Bawin SM, Sheppard AR, Adey WR. Possible mechanisms of weak electromagnetic field coupling in brain tissue. Bioelectrochem Bioenerg 1978;5:67–76.

  • 146.

    Blackman CF, Benane SG, Kinney LS, Joines WT, House DE. Effects of ELF fields on calcium ion efflux from brain tissue in vitro. Radiat Res 1982;92:510–20.

  • 147.

    Adey WR. Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 1981;61(2):435–514.

  • 148.

    Shin EJ, Jeong JH, Kim HJ, Jang CG, Yamada K, et al. Exposure to extremely low frequency magnetic fields enhances locomotor activity via activation of dopamine D1-like receptors in mice. J Pharmacol Sci 2007;105(4):367–71.

  • 149.

    Shin EJ, Nguyen XK, Nguyen TT, Pham DT, Kim HC. Exposure to extremely low frequency magnetic fields induces fos-related antigen-immunoreactivity via activation of dopaminergic D1 receptor. Exp Neurobiol 2011;20(3):130–6.

  • 150.

    Wang LF, Li X, Gao YB, Wang SM, Zhao L, et al. Activation of VEGF/Flk-1-ERK pathway induced blood-brain barrier injury after microwave exposure. Mol Neurobiol 2015;52(1): 478–91.

  • 151.

    Ravera S, Bianco B, Cugnoli C, Panfoli I, Calzia D, et al. Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes. Bioelectromagnetics 2010;31(4):270–6.

  • 152.

    Fournier NM, Mach QH, Whissell PD, Persinger MA. Neurodevelopmental anomalies of the hippocampus in rats exposed to weak intensity complex magnetic fields throughout gestation. Int J Dev Neurosci 2012;30(6):427–33.

  • 153.

    Gavalas RJ, Walter DO, Hamner J, Adey WR. Effect of low-level, low-frequency electric fields on EEG and behavior in Macaca nemestrina. Brain Res 1970;18:491–501.

  • 154.

    Anderson LE, Phillips ED. Biological effects of electric fields: an overview. In: Gandolfo M, Michaelson S, Rindi A, editors. Biological effects and dosimetry of static and ELF electromagnetic fields. New York: Plenum Press, 1984.

  • 155.

    Balassa T, Szemerszky R, Bárdos G. Effect of short-term 50 Hz electromagnetic field exposure on the behavior of rats. Acta Physiol Hung 2009;96(4):437–48.

  • 156.

    Dimitrijević D, Savić T, Anđelković M, Prolić Z, Janać B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity of Drosophila subobscura. Int J Radiat Biol 2014;90(5):337–43.

  • 157.

    He LH, Shi HM, Liu TT, Xu YC, Ye KP, et al. Effects of extremely low frequency magnetic field on anxiety level and spatial memory of adult rats. Chin Med J (Engl) 2011;124(20):3362–6.

  • 158.

    Korpinar MA, Kalkan MT, Tuncel H. The 50 Hz (10 mT) sinusoidal magnetic field: effects on stress-related behavior of rats. Bratisl Lek Listy 2012;113(9):521–4.

  • 159.

    Salunke BP, Umathe SN, Chavan JG. Involvement of NMDA receptor in low-frequency magnetic field-induced anxiety in mice. Electromagn Biol Med 2014;33(4):312–26.

  • 160.

    Szemerszky R, Zelena D, Barna I, Bárdos G. Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats. Brain Res Bull 2010;81(1):92–9.

  • 161.

    Kitaoka K, Kitamura M, Aoi S, Shimizu N, Yoshizaki K. Chronic exposure to an extremely low-frequency magnetic field induces depression-like behavior and corticosterone secretion without enhancement of the hypothalamic-pituitary-adrenal axis in mice. Bioelectromagnetics 2013;34(1):43–51.

  • 162.

    Stevens P. Affective response to 5 microT ELF magnetic field-induced physiological changes. Bioelectromagnetics 2007;28(2):109–14.

  • 163.

    Ross ML, Koren SA, Persinger MA. Physiologically patterned weak magnetic fields applied over left frontal lobe increase acceptance of false statements as true. Electromagn Biol Med 2008;27(4):365–71.

  • 164.

    Nishimura T, Tada H, Guo X, Murayama T, Teramukai S, et al. A 1-μT extremely low-frequency electromagnetic field vs. sham control for mild-to-moderate hypertension: a double-blind, randomized study. Hypertens Res 2011;34(3):372–7.

  • 165.

    Huss A, Koeman T, Kromhout H, Vermeulen R. Extremely low frequency magnetic field exposure and parkinson’s disease–a systematic review and meta-analysis of the data. Int J Environ Res Public Health 2015;12(7):7348–56.

  • 166.

    Zhou H, Chen G, Chen C, Yu Y, Xu Z. Association between extremely low-frequency electromagnetic fields occupations and amyotrophic lateral sclerosis: a meta-analysis. PLoS One 2012;7(11):e48354.

  • 167.

    Vergara X, Kheifets L, Greenland S, Oksuzyan S, Cho YS, et al. Occupational exposure to extremely low-frequency magnetic fields and neurodegenerative disease: a meta-analysis. J Occup Environ Med 2013;55(2):135–46.

  • 168.

    Kundi M, Hutter HP. Umwelthygienische Bewertung des Berichtes zur Bestimmung der Feldstarken niederfrequenter magnetischer Wechselfelder im Bereich der 110 kV Hochspannungsleitung im Siedlungsbereich der Gemeinde Kottingbrunn von Dr.-Ing. Dietrich Moldan vom 20.8.2014 [Internet]. Kottingbrunn(AT): Gemeinde Kottinbrunn, 2014:69–104. Available at:

  • 169.

    Stam R. Electromagnetic fields and the blood-brain barrier. Brain Res Rev 2010;65(1):80–97.

  • 170.

    Nittby H, Brun A, Strömblad S, Moghadam MK, Sun W, et al. Nonthermal GSM RF and ELF EMF effects upon rat BBB permeability. Environmentalist 2011; 31(2):140–8.

  • 171.

    Salford LG, Nittby H, Persson BRR. Effects of electromagnetic fields from wireless communication upon the blood-brain barrier. In: Sage C, Carpenter DO. The BioInitiative Report 2012: A Rationale for a Biologically based Public Exposure Standard for Electromagnetic Fields (ELF and RF). Available at: 1–52.

  • 172.

    Zhou JX, Ding GR, Zhang J, Zhou YC, Zhang YJ, et al. Detrimental effect of electromagnetic pulse exposure on permeability of in vitro blood-brain-barrier model. Biomed Environ Sci 2013;26(2):128–37.

  • 173.

    Tang J, Zhang Y, Yang L, Chen Q, Tan L, et al. Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res 2015;1601:92–101.

  • 174.

    Masuda H, Hirota S, Ushiyama A, Hirata A, Arima T, et al. No dynamic changes in blood-brain barrier permeability occur in developing rats during local cortex exposure to microwaves. In Vivo 2015;29(3):351–7.

  • 175.

    Sage C. Summary table 1-1. In: Sage C, DO Carpenter (editors.), The BioInitiative Report 2012: a rationale for a biologically-based public exposure standard for electromagnetic fields (ELF and RF), 2012. Available at:

  • 176.

    Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril 2008;89(1):124–8.

  • 177.

    Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, et al. Effect of radiofrequency electromagnetic waves (RF-EMF) from cellular phones on human ejaculated semen: an in vitro study. Fertil Steril 2009;92(4):1318–25.

  • 178.

    Wdowiak A, Wdowiak L, Wiktor H. Evaluation of the effect of using mobile phones on male fertility. Ann Agric Environ Med 2007;14(1):169–72.

  • 179.

    De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 2009;4(7):e6446.

  • 180.

    Fejes I, Zavacki Z, Szollosi J, Koloszar Daru J, Kovacs L, et al. Is there a relationship between cell phone use and semen quality? Arch Androl 2005;51(5):385–93.

  • 181.

    Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV. Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl 2005;28(3):171–9.

  • 182.

    Kumar S, Behari J, Sisodia R. Impact of Microwave at X-Band in the aetiology of male infertility. Electromagnetic Electromagn Biol Med 2012;31(3):223–32.

  • 183.

    Aitken RJ, Koopman P, Lewis SEM. Seeds of concern. Nature 2004;432(7013):48–52.

  • 184.

    Erogul O, Oztas E, Yildirim I, Kir T, Aydur E, et al. Effects of electromagnetic radiation from a cellular phone on human sperm motility:an in vitro study. Arch Med Res 2006;37(7):840–3.

  • 185.

    Dasdag S. Whole-body microwave exposure emitted by cellular phones and testicular function of rats. Urol Res 1999;27(3):219–23.

  • 186.

    Yan JG, Agresti M, Bruce T, Yan YH, Granlund A, et al. Effects of cellular phone emissions on sperm motility in rats. Fertil Steril 2007;88(4):957–64.

  • 187.

    Otitoloju AA, Obe IA, Adewale OA, Otubanjo OA, Osunkalu VO. Preliminary study on the reduction of sperm head abnormalities in mice, Mus musculus, exposed to radiofrequency radiations from global system for mobile communication base stations. Bull Environ Contam Toxicol 2010;84(1):51–4.

  • 188.

    Behari J, Kesari KK. Effects of microwave radiations on reproductive system of male rats. Embryo Talk 2006;1(Suppl 1):81–5.

  • 189.

    Neutra RR, Hristova L, Yost M, Hiatt RA. A nested case-control study of residential and personal magnetic field measures and miscarriages. Epidemiology 2002;13(1):21–31.

  • 190.

    Li DK, Odouli R, Wi S, Janevic T, Golditch I, et al. A population-based prospective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage. Epidemiology 2002;13(1):9–20.

  • 191.

    Roosli M, Moser M, Baldinini Y, Meier M, Braun-Fahrlander C. Symptoms of ill health ascribed to electromagnetic field exposure – a questionnaire survey. Int J Hyg Environ Health 2004;207(2):141–50.

  • 192.

    Huss A, Kuchenhoff J, Bircher A, Heller P, Kuster H, et al. Symptoms attributed to the environment-a systematic interdisciplinary assessment. Int J Hyg Environ Health 2004;207(3):245–54.

  • 193.

    Huss A, Kuchenhoff J, Bircher A, Niederer M, Tremp J, et al. Elektromagnetische Felder und Gesundheitsbelastungen – Interdisziplinare Fallabklärungen im Rahmen eines umweltmediznischen Beratungsprojektes. Umweltmed Forsch Prax 2005;10(1):21–8.

  • 194.

    Hagstrom M, Auranen J, Ekman R. Electromagnetic hypersensitive Finns: symptoms, perceived sources and treatments, a questionnaire study. Pathophysiology 2013;20(2):117–22.

  • 195.

    Schreier N, Huss A, Roosli M. The prevalence of symptoms attributed to electromagnetic field exposure: a cross-sectional representative survey in Switzerland. Soz Praventivmed 2006;51(4):202–9.

  • 196.

    Huss A, Roosli M. Consultations in primary care for symptoms attributed to electromagnetic fields–a survey among general practitioners. BMC Public Health 2006;6:267.

  • 197.

    Ausfeld-Hafter B, Manser R, Kempf D, Brandli I. Komplementärmedizin. Eine Fragebogenerhebung in schweizerischen Arztpraxen mit komplementärmedizinischem Diagnostik- und Therapieangebot. Studie im Auftrag vom Bundesamt für Umwelt. Universitat Bern. Kollegiale Instanz für Komplementärmedizin (KIKOM) [Internet]. Bern (CH): Bundesamt für Umwelt. 2006 Oct 5. Available at:

  • 198.

    Leitgeb N, Schrottner J, Bohm M. Does “electromagnetic pollution” cause illness? An inquiry among Austrian general practitioners. Wien Med Wochenschr 2005;155(9–10):237–41.

  • 199.

    Kato Y, Johansson O. Reported functional impairments of electrohypersensitive Japanese: a questionnaire survey. Pathophysiology 2012;19(2):95–100.

  • 200.

    Khurana VG, Hardell L, Everaert J, Bortkiewicz A, Carlberg M, et al. Epidemiological evidence for a health risk from mobile phone base stations. Int J Occup Environ Health 2010;16(3):263–7.

  • 201.

    Carpenter DO. The microwave syndrome or electro-hypersensitivity: historical background. Rev Environ Health 2015;30(4):217–22.

  • 202.

    World Health Organization. Factsheet Nr. 296, Elektromagnetische Felder und Öffentliche Gesundheit – Elektromagnetische Hypersensitivität (Elektrosensibilität) [Internet]. Genf (CH): WHO, 2005 Dec. Available at:

  • 203.

    Tresidder A, Bevington M. Electrosensitivity: sources, symptoms, and solutions. In: Rosch PJ, editor. Bioelectromagnetic and subtle energy medicine, 2nd ed. Boca Raton, FL, (USA): CRC Press, Taylor & Francis Group Version Date: 20141107, ISBN-13: 978-1-4822-3320-9 (eBook – PDF).

  • 204.

    Genuis SJ, Lipp CT. Electromagnetic hypersensitivity: fact or fiction? Sci Total Environ 2012;414:103–12.

  • 205.

    Johansson O, Liu P-Y. “Electrosensitivity”, “electrosupersensitivity” and “screen dermatitis”: preliminary observations from on-going studies in the human skin. In: Simunic D, editor. Proceedings of the COST 244: Biomedical Effects of Electromagnetic Fields – Workshop on Electromagnetic Hypersensitivity. Brussels/Graz: EU/EC (DG XIII) 1995:52–57.

  • 206.

    Johansson O, Gangi S, Liang Y, Yoshimura K, Jing C, et al. Cutaneous mast cells are altered in normal healthy volunteers sitting in front of ordinary TVs/PCs – results from open-field provocation experiments. J Cutan Pathol 2001;28(10):513–9.

  • 207.

    Belpomme D, Campagnac C, Irigaray P. Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder. Rev Environ Health 2015;30(4):251–71.

  • 208.

    Regel SJ, Negovetic S, Roosli M, Berdinas V, Schuderer J, et al. UMTS base station-like exposure, well-being, and cognitive performance. Environ Health Perspect 2006;114(8):1270–5.

  • 209.

    Zwamborn APM, Vossen SHJA, van Leersum BJAM, Ouwens MA, Makel WN. Effects of global communication system radio-frequency fields on well being and cognitive functions of human subjects with and without subjective complaints. The Hague (NL): TNO Physics and Electronics Laboratory, 2003 Sept, 86p. TNO-report FEL-03-C148. Available at:

  • 210.

    Eltiti S, Wallace D, Ridgewell A, Zougkou K, Russo R, et al. Does short-term exposure to mobile phone base station signals increase symptoms in individuals who report sensitivity to electromagnetic fields? A double-blind randomized provocation study. Environ Health Perspect 2007;115(11):1603–8.

  • 211.

    McCarty DE, Carrubba S, Chesson AL, Frilot C, Gonzalez-Toledo E, et al. Electromagnetic hypersensitivity: evidence for a novel neurological syndrome. Int J Neurosci 2011;121(12):670–6.

  • 212.

    Havas M, Marrongelle J, Pollner B, Kelley E, Rees CR, et al. Provocation study using heart rate variability shows microwave radiation from 2.4 GHz cordless phone affects autonomic nervous system [Internet]. In: Giuliani L, Soffritti M, editors. Non-thermal effects and mechanisms of interaction between electromagnetic fields and living matter. Bologna (IT): Ramazzini institute, 2010. European Journal of Oncology – Library Vol. 5. pp 187–218. Available at:

  • 213.

    Havas M. Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev Environ Health 2013;28(2–3):75–84.

  • 214.

    Tuengler A, von Klitzing L. Hypothesis on how to measure electromagnetic hypersensitivity. Electromagn Biol Med 2013;32(3):281–90.

  • 215.

    Klitzing L. Einfluss elektromagnetischer Felder auf kardiovaskulare Erkrankungen. umwelt medizin gesellschaft 2014;27(1):17–21.

  • 216.

    Santini R, Santini P, Danze JM, Le Ruz P, Seigne M. Investigation on the health of people living near mobile telephone relay stations: I/Incidence according to distance and sex. Pathol Biol (Paris) 2002;50(6):369–73.

  • 217.

    Navarro EA, Segura J, Portoles M, Gomez-Perretta de Mateo C. The microwave syndrome: a preliminary study in Spain. Electromagn Biol Med 2003;22(2–3):161–9.

  • 218.

    Hutter HP, Moshammer H, Wallner P, Kundi M. Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations. Occup Environ Med 2006;63(5):307–13.

  • 219.

    Abdel-Rassoul G, El-Fateh OA, Salem MA, Michael A, Farahat F, et al. Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology 2007;28(2):434–40.

  • 220.

    Blettner M, Schlehofer B, Breckenkamp J, Kowall B, Schmiedel S, et al. Mobile phone base stations and adverse health effects: phase 1 of a population-based, cross-sectional study in Germany. Occup Environ Med 2009;66(2):118–23.

  • 221.

    Molla-Djafari H, Witke J, Poinstingl G, Brezansky A, Hutter HP, et al. Leitfaden Senderbau -Vorsorgeprinzip bei Errichtung, Betrieb, Um- und Ausbau von ortsfesten Sendeanlagen. Wien (AT): Ärztinnen und Ärzte für eine gesunde Umwelt e.V. (Hrsg.), 2014 Oct. 2. Auflage, 42 p, Available at:

  • 222.

    Milham S, Stetzer D. Dirty electricity, chronic stress, neurotransmitters and disease. Electromagn Biol Med 2013;32(4):500–7.

  • 223.

    Blackman C. Evidence for disruption by the modulating signal. In: Sage C, Carpenter DO, editors. The bioInitiative report 2007: a rationale for a biologically-based public exposure standard for electromagnetic fields (ELF and RF), 2007. Available at:

  • 224.

    Belyaev I. Evidence for disruption by modulation: role of physical and biological variables in bioeffects of non-thermal microwaves for reproducibility, cancer risk and safety standards. In: Sage C, Carpenter DO, editors. BioInitiative report 2012: a rationale for a biologically based public exposure standard for electromagnetic fields (ELF and RF), 2012, Available at:

  • 225.

    Matronchik AI, Belyaev IY. Mechanism for combined action of microwaves and static magnetic field: slow non uniform rotation of charged nucleoid. Electromagn Biol Med 2008;27:340–54.

  • 226.

    Binhi VN, Alipov YD, Belyaev IY. Effect of static magnetic field on E. coli cells and individual rotations of ion-protein complexes. Bioelectromagnetics 2001;22(2):79–86.

  • 227.

    Première reconnaissance d’un handicap dû à l’électrosensibilité en France. Le Monde fr avec AFP | 25.08.2015. Available at:

  • 228.

    Abelous D. France has its first radiation-free refuge in the Drome [Internet]. EURRE/Drome (FR): Agence France Presse (AFP), 2009 Oct 9. Available at:

  • 229.

    Ecoforma. Mit einem schadstofffreiem Haus gegen Schlafprobleme [Internet]. Sarleinsbach (AT): Ecoforma, 2014 Sept 9. Available at:

  • 230.

    Friedmann J, Kraus S, Hauptmann Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 2007;405(3):559–68.

  • 231.

    Simko M. Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem 2007;14(10):1141–52.

  • 232.

    Pall ML. Explaining “Unexplained Illnesses”: disease paradigm for chronic fatigue syndrome, multiple chemical sensitivity, fibromyalgia, post-traumatic stress disorder, Gulf War Syndrome, and others. New York, NY (US), London (GB): Harrington Park Press/Haworth Press, 2007, ISBN 978-0-7890-2388-9.

  • 233.

    Bedard K, Krause KH. The NOX Family of ROS-Generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87(1):245–313.

  • 234.

    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007;87(1):315–424.

  • 235.

    Desai NR, Kesari KK, Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol 2009;7:114.

  • 236.

    Straub RH, Cutolo M, Buttgereit F, Pongratz G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med 2010;267(6):543–60.

  • 237.

    Gye MC, Park CJ. Effect of electromagnetic field exposure on the reproductive system. Clin Exp Reprod Med 2012;39(1):1–9.

  • 238.

    Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, et al. Oxidative mechanisms of biological activity of lowintensity radiofrequency radiation. Electromagn Biol Med 2015;19:1–16.

  • 239.

    Consales C, Merla C, Marino C, Benassi B. Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol 2012;2012:683897.

  • 240.

    Pall ML. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. J Chem Neuroanat 2015. pii: S0891-0618(15)00059-9. [Crossref]. [Epub ahead of print].

  • 241.

    Erdal N, Gurgul S, Tamer L, Ayaz L. Effects of long-term exposure of extremely low frequency magnetic field on oxidative/nitrosative stress in rat liver. J Radiat Res 2008;49(2):181–7.

  • 242.

    De Luca C, Thai JC, Raskovic D, Cesareo E, Caccamo D, et al. Metabolic and genetic screening of electromagnetic hypersensitive subjects as a feasible tool for diagnostics and intervention. Mediat Inflamm 2014;2014:924184.

  • 243.

    Myhill S, Booth NE, McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med 2009;2(1):1–16.

  • 244.

    Müller KE. Stressregulation und Mitochondrienfunktion. Zs f Orthomol Med 2012;1:1–13.

  • 245.

    Buchner K, Eger H. Veränderung klinisch bedeutsamer Neurotransmitter unter dem Einfluss modulierter hochfrequenter Felder – Eine Langzeiterhebung unter lebensnahen Bedingungen. umwelt medizin gesellschaft 2011;24(1):44–57.

  • 246.

    Hill HU, Huber W, Müller KE. Multiple-Chemikalien-Sensitivität (MCS) – Ein Krankheitsbild der chronischen Multisystemerkrankungen, umweltmedizinische, toxikologische und sozialpolitische Aspekte. Aachen (DE): Shaker-Verlag, 2010 Apr, 3rd edition, 500p. ISBN: 978-3-8322-9046-7.

  • 247.

    Redmayne M, Johansson O. Could myelin damage from radiofrequency electromagnetic field exposure help explain the functional impairment electrohypersensitivity? A review of the evidence. J Toxicol Environ Health B Crit Rev 2014;17(5):247–58.

  • 248.

    Von Baehr V. Rationelle Labordiagnostik bei chronisch entzündlichen Systemerkrankungen. umwelt medizin gesellschaft 2012;25(4):244–7.

  • 249.

    Warnke U, Hensinger P. Steigende. “Burn-out“-Inzidenz durch technisch erzeugte magnetische und elektromagnetische Felder des Mobil- und Kommunikationsfunks. umwelt-medizin-gesellschaft 2013;26(1):31–8.

  • 250.

    Havas M. Dirty electricity elevates blood sugar among electrically sensitive diabetics and may explain brittle diabetes. Electromagn Biol Med 2008;27(2):135–46.

  • 251.

    Herbert MR, Sage C. Autism and EMF? Plausibility of a pathophysiological link – Part I. Pathophysiology 2013;20(3):191–209.

  • 252.

    Herbert MR, Sage C. Autism and EMF? Plausibility of a pathophysiological link part II. Pathophysiology 2013;20(3):211–34.

  • 253.

    Eskander EF, Estefan SF, Abd-Rabou AA. How does long term exposure to base stations and mobile phones affect human hormone profiles? Clin Biochem 2012;45(1–2):157–61.

  • 254.

    Steiner E, Aufdereggen B, Bhend H, Gilli Y, Kalin P, et al. Erfahrungen des Pilotprojektes „Umweltmedizinisches Beratungsnetz“ des Vereins Aerztinnen und Aerzte für Umweltschutz (AefU). Therapeutische Umschau 2013;70(12):739–45.

  • 255.

    Hagstrom M, Auranen J, Johansson O, Ekman R. Reducing electromagnetic irradiation and fields alleviates experienced health hazards of VDU work. Pathophysiology 2012;19(2):81–7.

  • 256.

    Oberfeld G. Die Veränderung des EMF Spektrums und ihre Folgen. In: Baubiologische EMF-Messtechnik. München, Heidelberg (DE): Hüthig and Pflaum Verlag, 2012. ISBN 1438-8707.

  • 257.

    Berufsverband Deutscher Baubiologen. VDB-Richtlinien, Physikalische Untersuchungen, Band 1: Fürth (DE): Verlag AnBUS eV, 2006. 2nd edition. ISBN 3-9808428-6-X.

  • 258.

    Virnich M. Gutachten über die messtechnische Untersuchung der Charakteristik von Funksignalen [Internet]. Salzburg (AT): Land Salzburg, 2015 Jun 26, 141p. Available at:

  • 259.

    Bundesamt für Umwelt. Orte mit empfindlicher Nutzung (OMEN) [Internet]. Bern (CH): Bundesamt für Umwelt, 2010 Mar 4. Available at:

  • 260.

    Kundi M, Hutter HP. Mobile phone base stations – Effects on wellbeing and health. Pathophysiology 2009;16(2–3):123–35.

  • 261.

    National Council on Radiation Protection and Measurements (NCRP). Draft Report of NCRP Scientific Committee 89-3 on Extremely Low Frequency Electric and Magnetic Fields [Internet]. 1995 Jun 13. Available at:

  • 262.

    Oberfeld G. Prüfkatalog des Fachbereiches Umweltmedizin für das Vorhaben 380kV Freileitung von St. Peter a. H. zum Umspannwerk Salzach Neu (Salzburgleitung) der Verbund-Austrian Power Grid AG. [Internet] Salzburg (AT): Land Salzburg, 2006 Feb 27. Available at:

  • 263.

    Baubiologie Maes/Institut für Baubiologie + Nachhaltigkeit (IBN). Building Biology Evaluation Guidelines for Sleeping Areas (SBM-2015). Neuss, Rosenheim (DE): Baubiologie Maes, IBN., 2015 May, 3p. Available at:

  • 264.

    Der Schweizerische Bundesrat. Verordnung über den Schutz vor nichtionisierender Strahlung (NISV) vom 23. Dezember 1999 [Internet]. Bern (CH): Der Schweizerische Bundesrat, 2012 Jul 1. Available at:

  • 265.

    TCO Certified Displays 7.0-11 November 2015 [Internet]. TCO Development. Available at:

  • 266.

    Vignati M, Giuliani L. Radiofrequency exposure near high-voltage lines. Environ Health Perspect 1997;105(Suppl 6): 1569–73.

  • 267.

    Margaritis LH, Manta AK, Kokkaliaris KD, Schiza D, Alimisis K et al. Drosophila oogenesis as a bio-marker responding to EMF sources. Electromagn Biol Med 2014;33(3):165–89.

  • 268.

    Gustavs K. Options to minimize non-ionizing electromagnetic radiation exposures (EMF/RF/Static fields) in office environments [Internet]. Victoria, BC (CA): Katharina Consulting, 2008 Nov 14. Available at:

  • 269.

    Oberfeld G, Gutbier J. Elektrosmog im Alltag [Internet]. Stuttgart (DE): Diagnose Funk, 2013 Nov 10, 44p. Available at:

  • 270.

    Virnich M. Baubiologische EMF-Messtechnik – Grundlagen der Feldtheorie, Praxis der Feldmesstechnik. München, Heidelberg (DE): Hüthig & Pflaum Verlag, 2012. ISBN 1438-8707.

  • 271.

    Pauli P, Moldan D. Reduzierung hochfrequenter Strahlung im Bauwesen: Baustoffe und Abschirmmaterialien. Fürth (DE): Hrsg. Berufsverband Deutscher Baubiologen VDB e.V., Verlag AnBUS e.V. 2015. ISBN 978-3-9814025-9-9.

  • 272.

    Levy F, Wannag A, editors. Nordic adaptation of classification of occupationally related disorders (diseases and symptoms) to ICD-10 [Internet]. Oslo (NO): Nordic council of ministers, 2000, 53p. DIVS: 2000:839, ISBN: 92-893-0559-2. Available at:

  • 273.

    Bansal M, Kaushal N. Oxidative stress mechanisms and their modulation. New Delhi (IN): Springer, 2014:167.

  • 274.

    Brostoff J, Challacombe S. Food allergy and intolerance. London (GB): Balliere Tindall, 1987.

  • 275.

    Andre CM, Larondelle Y, Eners D. Dietary antioxidants and oxidative stress from a human and plant perspective, a review. Curr Nutr Food Sci 2010;6(1):2–12.

  • 276.

    Bouayed J, Bohn T. Exogenous antioxidants-double edged swords in cellular redox state; health beneficial effects at physiological doses versus deleterious effects at high doses. Oxid Med Cell Longev 2010;3(4):228–37.

  • 277.

    Hoffmann W, Staller B. Prävention durch richtige Ernährung. umwelt medizin gesellschaft 2012;25(2):115–7.

  • 278.

    Suzuki YJ, Packer L. Inhibition of NFkB activation by vitamin E derivates. Biochem Biophys Res Commun 1993;193(1):277–83.

  • 279.

    Zingg JM. Modulation of signal transduction by vitamin E. Mol Aspects Med 2007;28(5–6):481–506.

  • 280.

    Yeh SL, Wang HM, Chen PY, Wu TC. Interaction of ß-Carotin and flavonoids on the secretion of inflammatory mediators in an in vitro system. Chem Biol Interact 2009;179(2–3): 386–93.

  • 281.

    Carcamo JM, Pedraza A, Borquez-Ojeda O, Golde DW. Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry 2002;41(43):12995–3002.

  • 282.

    Carcamo JM, Pedraza A, Borquez-Ojeda O, Zhang B, Sanchez R, et al. Vitamin C is a kinase inhibitor: dehydroascorbic acid inhibits IkappaBalphakinase beta. Mol Cell Biol 2004; 24(15):6645–52.

  • 283.

    Kyaw M, Yoshizumi M, Tsuchya K, Suzaki Y, Abe S, et al. Antioxidants inhibit endothelin-1 (1-31)-induced proliferation of vascular smooth muscle cells via the inhibition of mitogenactivated protein (MAP) kinase and activator protein-1 (AP-1). Biochem Pharmacol 2002;64(10):1521–31.

  • 284.

    Lubbad A, Oriowo MA, Khan I. Curcumin attenuates inflammation through inhibition of TLR-4 receptor in experimental Colitis. Mol Cell Biochem 2009;322(1–2): 127–35.

  • 285.

    Woo JH, Lim JH, Kim YH, Soh SI, Min DS, et al. Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene 2004;23(10):1845–53.

  • 286.

    Nonn L, Duong D, Pechl DM. Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostata cells. Carcinogenesis 2007;28(6):1188–96.

  • 287.

    Khan N, Mukhtar H. Multitargeted therapy of cancer by green tee polyphenols. Cancer Lett 2008;269(2):269–80.

  • 288.

    Roskoski R. Biochemistry. Philadelphia, PA, USA: W.B. Saunders Company, 1996:530pp.

  • 289.

    Devlin TM, editor. Textbook of Biochemistry with Clinical Correlations, 5th ed. New York, NY (US): Wiley-Liss, 2002.

  • 290.

    Rassow J, Hauser K, Netzker, Deutzmann R. Biochemie. 2nd ed. Stuttgart (DE): Thieme, 2008:872pp.

  • 291.

    Müller KE. Genetische Polymorphismen der Catechol-O-Methyltransferase (COMT). umwelt medizin gesellschaft 2007;20(4):282–8.

  • 292.

    Rea WJ. Chemical Sensitivity, Vol. 2: Sources of Total Body Load, 1st ed. Boca Raton, FL (US): CRC Press/Lewis Publishers, 1994:569pp.

  • 293.

    Schäfer SG, Elsenhans B, Forth W, Schumann K. Metalle. In: Marquardt H, Schäfer SG, editors. Lehrbuch der Toxikologie. Heidelberg (DE): Spektrum Akademischer Verlag, 1997:504–49pp.

  • 294.

    Goyer RA, Cherian GM, editors. Toxicology of Metals. Berlin, Heidelberg (DE): Springer-Verlag, 1995:467pp.

  • 295.

    Müller KE. Immuntoxikologie der Metalle. umwelt medizin gesellschaft 2004;17(4):299–301.

  • 296.

    Aposian HV, Malorino RM, Gonzales-Ramirez D, Zuniga-Charles M, Xu Z, et al. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 1995;97(1–3):23–38.

  • 297.

    Flora SJ, Pachauri V. Chelation in Metal Intoxication. Int J Environ Res Public Health 2010;7(7):2745–88.

  • 298.

    Jennrich P. Detoxifikation von Schwermetallen. umwelt medizin gesellschaft 2012;25(4):24–7.

  • 299.

    Pall ML. Do sauna therapy and exercise act by raising the availability of tetrahydrobiopterin? Med Hypotheses 2009;73(4):610–3.

  • 300.

    Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, et al. Blue-light induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem 1995;270(32):18825–30.

  • 301.

    Tolentino M, Morgan G. Popularity of electronic devices, “greener” light bulbes increases blue light exposure. Pri Care Optometry News 2012;18–9.

  • 302.

    van der Lely S, Frey S, Garbazza C, Wirz-Justice A, Jenni OG, et al. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J Adolesc Health 2015;56(1):113–9.

  • 303.

    Narimatsu T, Negishi K, Miyake S, Hirasawa M, Osada H, et al. Blue light-induced inflammatory marker expression in the retinal pigment epithelium-choroid of mice and the protective effect of a yellow intraocular lens material in vivo. Exp Eye Res 2015;132:48–51.

  • 304.

    Nishi T, Saeki K, Obayashi K, Miyata K, Tone N, et al. The effect of blue-blocking intraocular lenses on circadian biological rhythm: protocol for a randomised controlled trial (CLOCK-IOL colour study). BMJ Open 2015;5(5):e007930.

  • 305.

    Mutter J, Naumann J, Schneider R, Walach H, Haley B. Mercury and autism: accelerating evidence? Neuro Endocrinol Lett 2005;26(5):439–46.

  • 306.

    Mutter J, Naumann J, Guethlin C. Comments on the article “the toxicology of mercury and its chemical compounds” by Clarkson and Magos (2006). Crit Rev Toxicol 2007;37(6):537–49; discussion 551–2.

  • 307.

    Mutter J, Curth A, Naumann J, Deth R, Walach H. Does inorganic mercury play a role in Alzheimer’s disease? A systematic review and an integrated molecular mechanism. J Alzheimers Dis 2010;22(2):357–74.

  • 308.

    Geier DA, King PG, Sykes LK, Geier MR. A comprehensive review of mercury provoked autism. Indian J Med Res 2008;128(4):383–411.

Druckversion Druckversion | Sitemap
© Gabriel-Tech GmbH 2006 - 2020